If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+30x+6=0
a = 6; b = 30; c = +6;
Δ = b2-4ac
Δ = 302-4·6·6
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{21}}{2*6}=\frac{-30-6\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{21}}{2*6}=\frac{-30+6\sqrt{21}}{12} $
| 5x²+13x+8=0 | | (3x+8)(3x+8)-64=0 | | (3x-1)-9(3x-1)=0 | | (x)(x)-x-6=0 | | 51/2x+2=31/2x+14 | | p=12-5Q=p=4+4Q | | p=12-5Q | | -8c+3=c+8-10c | | 17x=4+12 | | 2/x+2-1/x+1=4/x+4-3/x+3 | | 4.4(4.7r-5.4)=96.7 | | 4x^2-8x-6x+12=x^2-x | | (4x-6)(x-2)=0 | | 2x1+3x2=48 | | 3m^2-4m-186=0 | | 3x-1=7-2x=5-x | | 4x+1=x416 | | (3x-7)/4=3 | | 20=-5(x+7 | | 16/31=3a/30 | | 2a3+25a—13=0 | | 2s^2-5S-12=2s^2-9s+4 | | 2x+5-(3x-5)=11 | | 4K=k+4 | | x^2-X-3000=0 | | 6y+1=4y=7 | | 3n+6=30-n | | 2000=3*60+2x | | 1/2(4w+6)=1/3(9-3w) | | 10+-63x+52x2+63x3+10x4=0 | | 1.25=0.75+y | | 11x^2-32x-315=0 |